If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4t^2+4t=80
We move all terms to the left:
4t^2+4t-(80)=0
a = 4; b = 4; c = -80;
Δ = b2-4ac
Δ = 42-4·4·(-80)
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-36}{2*4}=\frac{-40}{8} =-5 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+36}{2*4}=\frac{32}{8} =4 $
| -3b+8/6=2 | | 2w+w+1=29 | | 4y+5+3y-7=90 | | 10d-10=8d | | 8(-3+x)=32 | | 9(x-2)-11=21-77 | | 3x+15=2x-5=90 | | 5x+(X+6)=2x-(-34) | | 105+36=6s+3 | | 21/2+20s=48 | | 34-2=33x+1 | | 20x=4x+10 | | u-35/5=-6 | | -1m+6=-3 | | -2x-38=16+x | | 3+6s+36=105 | | 43.5-0.25y=84-y | | 5x-2=2x+10=180 | | 6s+3+36=105 | | 3x+1=3×+ | | a4−21=7 | | 105=96+6s+3 | | 0=-1/5(x-5)(x-20) | | -3(n+6)=-3(n-4) | | (3x-6)=96 | | 40=2a-3+3a+1+2a | | -3(n+6)=-3(n-4 | | -9/8x-9=0 | | -18x=42 | | 20+13x=-383 | | 10(m+2)=70 | | -3(x+1)=3-5x |